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Weather forecasting was first
presented as a computational problem by
Richardson (1922) based on the
equations of fluid dynamics, and started
its meteoric rise with the advent of
digital computers. The approximations
needed to convert the relevant
differential equations to numerical form
suitable for computation on large
computing machines thus evolved.
From this perspective, the concept of
modeling was conceived; an atmospheric
numerical ‘model’ was developed and
solutions to this model were sought.  A
variety of models have been developed
since to meet this goal, and the ‘spectral
model’ is one of these.

For this purpose the atmosphere is
represented by variables describing
molecular composites of its gases; the
primary variables are velocity,
temperature, density, water content in all
phases, and aerosols.  These variables
are considered to be distributed
continuously in three-dimensional space
surrounding the Earth and vary with
time.  The time evolution of these
variables may be determined at each
point in space (the Eulerian method) or
by following the particles through time
(the Lagrangian method) and both
methods are in use.  The differential
equations defining the future state of the
variables are based on physical and
dynamical principles.  These principles

include the equations of motion (the
Navier-Stokes equations), conservation
of mass, an equation for change in
entropy, equations for changes in water
substance in its various phases, and
chemical equations for changes of
aerosols.

In general terms, suppose a vector B
to represents N dependent variables
describing the state of the prediction
system at any time such that B = {Bb} =
(V ρ s qv qi ql aj ⋅⋅⋅)

T where T stands for
transpose.  The weather prediction
system can be written as

€ 

∂B
∂t

= F B,r,t( )   (1)

where  F has the dimensions of B ,
depends nonlinearly and differentially on
B, a n d  depends  on r  (the space
coordinates) and t. A linear matrix
operator L  is often used to transform
these equations,

€ 

L ∂B
∂t

= ˜ F B,r,t( )  (2)

This system of equations is the basis
from which the ‘model’ is selected and
integrated numerically in time to predict
the future state of the fluid.  Additional
features needed to complete the model
are boundary conditions, initial
conditions, scale truncation, external
forces and computational resources.

The ‘model’ is constructed by
selecting a methodology to convert the
basic nonlinear system (2) to a numerical
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form suitable for computation and
integration on a digital computer.  Finite
differencing in both the time and space
dimensions was the first method
attempted and is still successfully used
for many applications.  Since the vertical
and horizontal dimensions in the
atmosphere have unique properties, they
often are considered separately.  Given
that at any given height in the
atmosphere a closed spherical surface
exists on which the dependent variables
describing the fluid are prescribed and
predicted, the spectral method, which
assigns a set of known continuous
orthogonal functions over the domain to
represent these variables has also been
utilized.  When all the variables are
described in this way, the resulting
system is integrated over the global
domain, leading to a set of ordinary
nonlinear differential equations in time
and on each vertical level.  Concurrently,
differentiation in the vertical space
coordinate and time is generally
transformed to finite differences.  The
spectral method is most appropriate for
the larger space scales since the
functions usually used are global.
Additional methods that have been
utilized include finite-elements and
spherical geodesic grids.  Let us
compare the finite difference system to
the spectral system to evaluate their
relative properties.

1. THE FINITE DIFFERENCE
METHOD

To approximate the continuum in
space, choose a three-dimensional grid
with M points and suitably prescribed
boundary conditions, and a difference
operator to evaluate derivatives.
Assigning values to B  at each of the
points and using them as a set of initial

values, a numerical integration can
proceed.  Note that B has dimensions
(NxM). The matrix L becomes, by virtue
of the difference operator, an (NxM) x
(NxM) matrix that can in principle be
inverted, and F  as well becomes a
numerical vector with NxM elements
after application of the difference
operator at each grid point.  The final
finite difference system is then written,
using a circumflex to represent the
numerical vectors and matrices at the
grid points,

€ 

∂ˆ B 
∂t

= ˆ L −1 ˆ F ˆ B ,ˆ r ,t( )  (3)

The solution is thus reduced to a matrix
computation provided a numerical
scheme is introduced to step the solution
forward in time, and the resulting
computational errors and stability issues
are explicit in the numerical and physical
approximations made.

2. THE SPECTRAL METHOD

On the continuous domain over
which the model variables are to be
evaluated, select a set of linearly
independent global functions (Zm ) that
are continuous over the domain and have
at least continuous first and second
derivatives.  The model variables Bb are
expanded in these functions with
unknown time dependent coefficients.
Thus instead of a set of values for the Bb

at each grid point (iΔx1, jΔx2, kΔx3) one
has

€ 

Bb = Bb,m (t)Ζm
m=1

M e

∑ (r)  (4)

For application to the prediction
system introduce (4) into (2). To
maintain the exact form of (2) the series
given by (4) must be infinite.  Using a
truncated form will cause an error, just
as the reduction to a grid does in (3).
Selecting an optimum truncation is a
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significant issue.  The choice of these
functions is arbitrary but some
guidelines may optimize their selection.
It would be ideal to select functions that
fit the observation points of the
expanded variables exactly but the
distribution of observations is not
sufficiently uniform to make this
feasible.  The expansion functions might
be chosen to fit statistics of observations
interpolated to a more uniform grid such
that the least number of functions (N)
were required to describe most of the
variance of the variables at those points.
Additionally, functions could be chosen
that fit boundary conditions most
efficiently and/or with convenient
orthogonalization properties.

The operator L is often used with the
spectral method.  This system is always
linearly decoupled, so L is represented
as a diagonal matrix with Lb elements on
the diagonal. The prediction equation for
each variable b in scalar form then
appears as,

€ 

Lb
∂Bb

∂t
= ˜ F b B,r,t( )  (5)

Note the variables are still nonlinearly
coupled in the functions.  Substitution of
(4) into (5) leads to the error equation,
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∂Bb,a

∂t
LbΖa

 

 
 

 

 
 

a=1

M e

∑ − ˜ F b = εb  (6)

To solve this system for the unknown
expansion coefficients Bb,a , multiply (6)
by suitable test functions 

€ 

ˆ Z k(r)and
require the integral over the space
domain to vanish. These test functions
must be continuous over the domain, and
can be arbitrary, but are often chosen to
be the expansion functions. The
prediction equations for the expansion
coefficients then become,
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∂Bb,a

∂t
LbΖa

ˆ Ζ kdS∫
 

 
 

 

 
 

a=1

M e

∑

− ˜ F b∫ ˆ Ζ kdS = 0
(7)

and yield NxMe equations for the
unknown quantities, 

€ 

∂Bb,a ∂t . This
system can be solved by choice of a
suitable time extrapolation procedure.

To represent (7) in a form more
comparable to the finite difference
equations (3), let Bb = (Bb,a) and Z  =
(Za), both vectors with Me elements and
the test functions as ˆ Z = ( ˆ Z k ) .  Recalling
that the functions F b are implicitly
functions of (r, t), projection onto the
expansion functions yields,

€ 

Fb = Fb,a (t)Za
a
∑ = ZTFb  (8)

where Fb = (Fb,a). Using the defined
vectors, (7) becomes,

€ 

ˆ Z ∫ LbZ
TdS ⋅ ∂Bb

∂t
= ˆ Z ∫ ZTdS ⋅Fb  (9)

and represents Me equations for the
expansion coefficients of each dependent
variable.  To combine the N equations of
(9) into one expression, it is convenient
to define the Me x Me matrices

€ 

A b ≡
ˆ Z ∫ LbZ

T dS  and A ≡ ˆ Z ∫ ZTdS ,

and then create (NxMe)x(NxMe)
matrices having these matrices on the
diagonals; i.e., AL = diag (Ab) and AR =
diag (A ).  Extended vectors for the
expansion coefficients to include all the
variables can be constructed such that Bs

= (Bb) and Fs = (Fb), leading finally to an
equation which is formally identical to
the finite difference equation (3),

€ 

∂Bs

∂t
=A L

−1A RFs  (10)

The corresponding grid point values
from this spectral representation are
calculated at each point (iΔx1, jΔx2,
kΔx3) for each dependent variable Bb by
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use of (4) and can then be compared to
the values derived from the Finite
Difference equation (3).  This
comparison will yield information on
how each method deals with its own
truncation and when comparisons are
made to observations, one can assess the
relative qualities of each method.

2.1 Specifics of the Spectral method
used for NWP

The subsequent discussion will focus
on the horizontal domain of the model
representation because most significant
prediction models represent their
dependent variables on a grid of points
in the vertical and use non-spectral
methods on that grid.  This requires that
the variables Bb be represented on K
surfaces in the vertical, with the surfaces
separated by the grid intervals, and the
variables described in those surfaces by
(4).

When selecting appropriate spectral
functions for the expansion (4), in
addition to fitting observations well, the
functions should also be chosen with the
properties of the system in mind.
Several of these properties follow.  First
require the functions Za to satisfy the
eigenvalue problem,

Lb Za = -cb,a Za.  (11).
In practice the selection of Lb almost
always represents a conversion of wind
components to vorticity and divergence,
which is given by a linear differential
operator.  Application of this operator in
(11) leads to a variety of useful and
simple functions.  The second condition
is to require the expansion functions to
be orthogonal and normal over the
domain in a Hermitian sense,

Zi∫ Zj
∗dS = δ i, j  (12).

This condition is reasonably simple to
satisfy, since most function sets can be

orthogonalized.  Finally, the test
functions when selected as the expansion
functions do not lead to a significant loss
of generality, thus this condition is
uniformly imposed as ˆ Z =Z .  Utilizing
these three conditions greatly simplifies
the calculations required to perform each
prediction time step since both integrals
in (9) become diagonal matrices.

A variety of functions have been
used for the expansion (4), most
satisfying the conditions just
enumerated, with the selection
depending on the degree of generality
desired to approximate the general
system (10).  When the atmosphere is
represented on a channel with rigid
boundaries at fixed northern and
southern latitudes short of the poles,
double Fourier series in latitude and
longitude are found to be convenient
expansion functions.  They satisfy the
boundary conditions easily, and because
of the very simple addition rules for
these functions, nonlinear products are
rapidly calculated.  For the full global
domain approximated by spherical
surfaces over the Earth, the obvious
expansion functions that satisfy the
boundary conditions are surface
spherical harmonics (often denoted as
solid harmonics), and they have become
the functions of choice for spectral
modeling.  Surface spherical harmonics
are constructed as the product of
associated Legendre polynomials and
complex exponential functions.
Selecting coordinates in spherical
surfaces such that µ = sinϕ, where ϕ is
latitude, and λ is longitude, normalized
Legendre polynomials represent the
latitudinal structures with the following
form;
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Pn
m µ( ) ≡ (2n +1) (n −m)!

(n + m)!
 

  
 

  

1
2
×

(1−µ2)
m
2

2n n!
d
dµ

 

 
 

 

 
 

n+m

(µ2 −1)n
 (13).

These are polynomials of degree n with
n-m roots in the domain - π/2 < ϕ < π/2
and m roots at the poles.  Together with
Fourier series in longitude the solid
harmonics are,

Yn,m(λ, µ) = Pn,m(µ)e
imλ  (14).

These are the complex expansion
functions Za used in (4) for the
horizontal structures.  All functions
vanish at the poles except the zonal ones
(m = 0), and these remain finite there.
The indices (n, m) define the roots of the
functions and thus may be considered
scaling elements; i.e., the larger the
indices, the smaller the scales
represented by the functions.  An
example is given in Figure 1, which
shows the cellular structure of the
function for fixed n and various values
of m.  The total number of cells over the
domain remains the same since some of
the roots appear at the poles, but the cell
structures differ.  It is convenient to
represent the indices as a single complex
index, say α = (n + im).  The functions
are orthogonal over their respective

domains and normalized, and this is
expressed (in a Hermitian sense) as

1
4π

Yα∫ Y ′ α 
*dS = δα, ′ α  (15),

with integration taken over the surface of
the unit sphere.  The asterisk signifies
complex conjugation, and δ  is the
Kroniker delta.  If Lb ≡ ∇2 (the Laplacian
operator), substitution of Yα for Z a in
(11) yields eigenvalues,
cα = n(n +1)  (16).
Thus solid harmonics satisfy the
conditions desired for suitable expansion
functions.

Most atmospheric variables (Bb) are
sufficiently smooth that when expanded
in these functions, the series converges
rapidly.  That expansion takes the form,

€ 

Bb (λ,µ,zk,t) = Bb,α ,k
α

∑ (t)Yα (λ,µ)  (17),

where zk is any selected vertical level
and the series truncates at Me.  The range
of (α ) is n ≥  0 and because of the
complex nature of Fourier series, m
takes both positive and negative values.
When (17) is introduced into (10) and
suitably integrated over the space
domain, the resulting equations become
a set of ordinary nonlinear differential
equations in time for the expansion
coefficients.
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Figure 1. Cellular structure of solid harmonic functions for n =5 and all allowed values of m.

2.2 The barotropic vorticity equation

To understand some of the
advantageous features of the spectral
method it is convenient to use a simple
reduction of the complete system for
demonstration purposes.  Consider a
barotropic fluid, which exists if the
thermodynamic variables are uniquely
related to one another and are
independent of position in the fluid.
Since the vertical variation becomes
irrelevant to the solution of the fluid
motions in this setting, the motions need
consideration in only one horizontal
surface.  In this context it is convenient
to assume that the fluid is
incompressible, which leads to three-
dimensional non-divergence.  If no
divergence is introduced at the upper and
lower boundaries, the continuity
equation can be integrated over the
vertical domain to demonstrate that no
divergence exists in any horizontal
surface.  Finally, if the fluid is
considered to be in hydrostatic

equilibrium, it is only necessary to
establish the evolution of the horizontal
velocity in any such surface and the
vertical component of velocity can be
ignored.  This velocity is represented by
two scalar variables, which may be
transformed to any other two scalar
functions.  Because rotation plays such a
major role in atmospheric motions,
vorticity and divergence are the popular
choices for this transformation, and since
the divergence vanishes for this
discussion the velocity may be
represented uniquely by the vorticity
alone.  This leads to the Barotropic
Vorticity Equation (BVE).  This
equation, although representing a very
simplified version of the atmosphere,
contains many features of the full
atmospheric system and is thus a
convenient tool for evaluating prediction
techniques.

Applying the approximations stated
above and ignoring friction, the resulting
equation of motion may be written;
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€ 

∂V2
∂t

= −V2 ⋅ ∇V2 - 2
r 
Ω ×V2

- 1
ρ p( )

∇2p
  (18),

where the subscript 2 denotes two-
dimensionality.  The Earth’s vorticity
may be expressed here as   2

r 
Ω = fk

where f  = 2Ω  sinϕ , the Coriolis
parameter, and ϕ  is latitude.  If the
velocity is now transformed to rotation
and divergence by the definitions,
V2 = k × ∇ψ + ∇χ

∇⋅V2 =∇
2χ ≡ δ ≡ divergence

k ⋅∇ ×V2 =∇2ψ ≡ ζ ≡ relative  vorticity
(19),
an equation for predicting the vorticity
may be established by applying the
operator k ⋅ ∇ × to  (18);

k ⋅∇ ×
∂V2
∂t

= −V2 ⋅ ∇V2 - fk ×V2
 

 
 

 

 
  (20).

Noting that the divergence vanishes, and
substituting the definitions from (19), the
barotropic vorticity equation emerges as,

∂ζ
∂t

= −V2 ⋅ ∇η = −k × ∇ψ ⋅∇η = −J ψ,η( )

η ≡ ζ + f ≡ absolute vorticity
 (21).

If one nondimensionalizes (21) using the
Earth’s radius (a) for space and its
rotation rate (Ω) for time and noting that
the Coriolis parameter is then f = 2µ, the
vorticity may be written in terms of the
stream function (ψ) as,
∂∇2ψ
∂t

= −2 ∂ψ
∂λ

− F(ψ )

F(ψ ) ≡ ∂ψ
∂λ

∂∇2ψ
∂µ

−
∂ψ
∂µ

∂∇2ψ
∂λ

 (22).

Indeed, ψ  = B , the only variable
remaining of the set Bb and for only one
k level.  Eq. (22) contains a linear term
and two quadratic nonlinear terms; these
terms constitute F, what remains of Fb in

(8).  The representation in terms of
expansion coefficients ψα (t) can be
attained using (11) and Lb ≡ ∇2, (17) for
the expansion of ψ , and a similar for
expansion of F, to yield,

€ 

cα
α

∑ Yα (λ,µ)
∂ψα (t)
∂t

=

2i mα
α

∑ ψαYα (λ,µ)+ FαYα (λ,µ)
α

∑
(23).

The final step is to multiply (23) by the
test functions and integrate over the unit
sphere.  In this case the solid harmonics
are themselves the test functions and to
exploit orthogonality the product is with
the conjugate of each harmonic.  This
results in the prediction equation for
each of the expansion coefficients,
∂ψα ( t)
∂t

= 2imαcα−1ψα (t) + Fα ( t)

Fα (t) = F(ψ )Yα*(λ,µ)dS∫
 (24).

It should be apparent how (24) can be
extended to involve more dependent
variables and any number of levels in the
vertical.  However, if more variables
exist in the system, these variables will
be coupled nonlinearly through the
coefficients Fα.

2.3 Computational features of the
spectral method

Interaction coefficient method

Since all prediction models are
computationally intensive, the spectral
method must compete in the efficient
utilization of available computing
resources.  We shall use the BVE as a
demonstration model in the following.  It
is apparent from (24) that most of the
computing time required involves the
calculation of the coefficients Fα and
much effort has gone into optimizing
this calculation.  Early attempts followed
the procedure of substituting the
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expansion series (17) for ψ into (22) to
represent F(ψ) and calculating Fα from
(24).  This results in,

€ 

Fα (t) =
i
2

ψβ
γ

∑
β

∑ (t)ψγ (t)Iα,β ,γ

Iα,β ,γ ≡ (cβ − cγ ) ×

mβYβ
∂Yγ
∂µ

−mγYγ
∂Yβ
∂µ

 

 
 

 

 
 ∫ Yα

*dS

 (25).

The indices β and γ go over the same
range as α which is determined by the
selected truncation and the integration is
over the unit sphere.  The integrals Iα,β,γ

are denoted as interaction coefficients
and have exact solutions.  Applying (25)
in (24) shows that the time change of
any expansion coefficient of the set α
depends on the coupling of all the
coefficients allowed in the spectral
domain (refer to Figure 2) and each
couple is weighted by its own interaction
coefficient.  Since each index consists of
two real numbers, the set of interaction
coefficients can be as large as the largest

allowed index to the sixth power.  In
actuality, because of the simple addition
rules for trigonometric functions, the
integration over longitude reduces this
by one order.  The vector of these
coefficients can be stored and need be
computed only once.  However the
number of multiplications that must be
performed at each time step is daunting
as the truncation limit becomes large.

The more complex system (10) can
be represented identically to (24) by
simply increasing the number of
expansion coefficients to include
additional variables.  But a shortcoming
of using interaction coefficients concerns
the convergence rate for the series of
several dependent variables included in
the general set (Bb) when expanded in
global functions, in particular liquid
water and precipitation.  Significant
truncation errors may ensue with time
integration utilizing such functions.

Figure 2: Truncation diagram in a spherical surface using the spectral method.  Several popular
truncations are depicted.
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Transform method

A technique denoted as the
transform method is an alternate
procedure for calculating the coefficients
Fα, yielding the same (or better) results
than the interaction coefficient method.
This  technique involves the
transformation of the integrand in (24)
onto a special numerical grid and solving
the integral by quadrature.  If the grid is
selected appropriately, the integral is
evaluated exactly and at a great
reduction in computing cost.  In the
longitudinal direction the quadrature is
most conveniently done by a trapezoidal
formula since it is known that
1
2π

eimλ

0

2π

∫ dλ =
1
J

eimλ j
j=1

J

∑  (26).

The summation is taken over an equally
spaced grid of points λj, and uses twice
the number of points as the maximum
wave number.  Since the functions in
latitude are Legendre polynomials, a
Gaussian quadrature is preferred.  In this
case the quadrature is such that,

H(µ)dµ = Gk (µ,K)
k=1

K

∑
−1

1

∫ H(µk )  (27)

and is exact if the polynomial H is of
degree 2K-1 or less.  The Gk are
Gaussian weights and the grid points µk

are the roots of the Legendre polynomial
PK (µ).  The appropriate grid for this
calculation contains all allowed values
(λj, µk) as specified.  The range of the
grid points is determined by the
functions of the integrand in (24).

The derivatives in F(ψ), see (22),
must be taken before evaluating the
function on the grid.  Based on (14) and
(13) the differentiation with λ  is
straightforward, but the µ-derivative

requires more information.  The
Legendre polynomials satisfy the
following differential equation,

€ 

(1−µ2)
1
2 dPα
dµ

=

bαPα−1 − bα+1Pα+1

(28)

where the coefficients bα are constants,
and this defines the latitudinal
derivatives.  Following this procedure,
F(ψ) is reduced to a quadratic series over
the indices (β, γ) in terms of the complex
exponential functions in longitude and
the associated Legendre polynomials in
latitude, both of which can be evaluated
on the specified grid.  The actual
calculation proceeds as follows.  First
the quadrature over longitude is taken,

€ 

Fmα
(µ,t) =

1
2π

F ψ(λ,µ,t)( )e−imα λ∫ dλ =

1
J

F ψ(λ j ,µ,t)( )
j=1

J

∑ e− imα λ j

(29)
where the sum goes over the value J =
3M -1 if triangular truncation is chosen.
The calculation is made over those
latitudes µ  specified from the
quadrature,

€ 

Fα (t) =
1
2

Fmα
(µ,t)Pα (µ)dµ =∫

Gk (µk
1

K

∑ ,K)Fmα
(µk,t)Pα (µk )

(30).

Since the polynomial under summation
in (30) is H(µ) and is the product of
three Legendre polynomials less one
order, and each has a maximum order of
N, it can be shown that K = (3N-1)/2.

Analysis of the computing
requirements for (29) and (30) indicates
that the maximum number of
calculations is proportional to N3,
significantly less than the N5 needed by
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the interaction coefficient method. When
using the transform method with those
variables that have unacceptable
convergence properties yet contribute to
(3), their series representation is not
essential.  Their input is included
directly into the quadrature formula by
their distribution on the transform grid.
Since all the forcing functions are
summed over the grid before quadrature
is completed, any singularities from
individual terms are smoothed out and
their effects are minimized.  It was the
benefits of the transform method that
made the spectral method a popular
alternative to the finite difference
method.

2.4 Advantageous features of the
spectral method

Linear instability and phase errors

It can be seen from (24) that the
prediction equation is made up of a
linear and a nonlinear term.  Since this is
the BVE, only one dependent variable
exists and it is clear that the linear term
can be dealt with exactly by solving only
the linear part of the equation.  The
dependent variable can be transformed
by that solution and the resulting
equation will contain only a nonlinear
term.  Thus linear instability and
associated phase propagation errors can
be completely avoided.  For the more
general system (10) the dependent
variables constitute a vector and thus the
linear system would look like,

€ 

∂Bs

∂t
=CBs + nonlinear terms  (31),

where C  is a matrix of constant
coefficients.  This matrix may be
diagonalized and the linear part of the
equation may be solved.  Transforming
Bs appropriately, the linear terms can be

removed from the equation and only the
nonlinear terms need be calculated,
again removing the possibility of
potential linear instability and phase
errors.  However, many studies have
shown that this is not true for finite
difference equations.  The errors that
result from linear wave dispersion can
have a dramatic effect when they are
included in the nonlinear wave
interactions, setting up systematic errors
as the time integration evolves.

Nonlinear instability

Phillips (1959) brought the problem
of nonlinear instability to the modeling
community’s attention, an issue
requiring careful attention lest the
evolving solutions become unstable.
Finite difference equation (3) shows that
nonlinear terms of the form u∂u ∂x  exist
and must be calculated.  Assume for
simplicity that u is one of the velocity
components and is a function of only
one space dimension (x).  Since the
variables must be represented on a grid
of points truncated at some Δx, one
could as well represent u as a Fourier
series with the shortest resolvable wave
length of 2Δx and corresponding wave
numbers m ≥  π /Δ x.  If only sine
functions are considered, u can be
written as,

u = ui
i=1

M

∑ sinmix    (32)

over M grid points.  The nonlinear
product of any two waves, mI and m j

becomes,

  

€ 

u∂u
∂x = m j sinmix cosm jx +L =

1
2m j sin mi + m j( )x + sin mi −m j( )x[ ] +L

(33).
Consider now that u can be predicted
from this term and others as,

  u t + Δt( ) = u t( ) + Δt(u∂u ∂t) +L (34).
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So long as mI + mj ≤ M, u(t + Δt) can be
represented by the Fourier series in (32)
without error.  However if the sum of the
two wave numbers exceeds M, the series
limit is exceeded.  An expansion of u(t +
Δ t) with M terms will not see this
interaction.  Worse yet, it can be shown
by trigonometric expansion that terms
larger than MΔx will fold back into the
range (M-mk) Δx creating an aliasing
error that can grow without bound and is
thus denoted as nonlinear instability.
Since this error tends to affect the
shortest scales, the solution has been to
include in the model equations a scale
sensitive viscosity to damp these scales
before they grow significantly, a rather
arbitrary and nonphysical, but practical,
decision.

Interestingly, the spectral form of the
equations is insensitive to this problem.
Suppose that the series for α in (24) is
truncated at M e as suggested.  This
implies that all values of ψα  for α > Me

vanish.  However on calculating the
nonlinear product F(ψ) one could get
coefficients Fα for α  ≤ 2M e since the
quadratic product of a polynomial will
yield a polynomial with twice the
maximum order.  Thus in principle at
each time step, the number of non-
vanishing coefficients could double.
This complication is uniformly resolved
in the spectral method by ignoring all
computations for α  > M e once a
calculation has begun. Since the
products with α > Me are discarded, they
cannot fold back into the domain of α <
Me to corrupt the coefficients in that
range.  This allows for stable
computations with no requirement for
artificial viscosity, regardless of the
complexity of the prediction system.

Conservation

A prominent feature of the
atmospheric prediction system is that in
the absence of external energy sources,
the total energy of the system must be
conserved in time.  Despite the sources
that come from say radiation and surface
boundary effects, it is important that the
conservation conditions inherent in the
differential equations be maintained in
the computational equations.  Setting up
the finite difference equations to
conserve energy is a daunting task and
has engaged the best researchers for
decades.  It is particularly difficult
because of the three dimensional nature
of the task. The significance of
conservation in a truncated framework is
most simply seen by use of the BVE.  It
is an easy matter to demonstrate that
based on (21) the absolute vorticity or
any function thereof must be conserved
both following a particle and on
integration over the surface of all
particles.  When this equation is
converted to finite difference form, the
condition of conservation should also be
met.

Arbitrary application of a finite
difference operator to (21) will not
achieve this required result.  Arakawa
(1966) presented a procedure that
assures conservation not only of
vorticity, but kinetic energy and
enstrophy (mean squared vorticity) as
well.  The technique involved multiple
representations of the Jacobian operator;
Arakawa used the following three, with
x and y as the independent variables and
η as absolute vorticity;
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Applying centered second-order finite
differencing to these three terms he
generated three Jacobian operators and
he combined them linearly with arbitrary
coefficients.  Considering enstrophy
conservation by using η  J (ψ , η), he
discovered that the sum of all the grid
point values over the domain vanished if
he weighted the Jacobians equally and
gave each a value of one-third.  This
computational method also assured the
conservation of vorticity and energy.
The method was ultimately extended to
the primitive equations, which represent
general three-dimensional flows with
divergence. Interestingly, this procedure
also prevents nonlinear instability.  Yet
despite its success, the method implies
the solution to an integral by adjustment
of the integrand to satisfy a few given
constraints, and this may be
accomplished in many different ways.
Since no proof of optimization has been
established, significant truncation errors
may occur using this technique.

On the other hand, using the BVE in
spectral form, it has been demonstrated
both by Platzman (1960) and Lorenz
(1960) that the truncated form of the
spectral equations as represented by (24)
including the truncation of the nonlinear
terms as indicated, do maintain these
conservation conditions and do not
require a special process as is the case
for the finite difference equations.  This
is of course not true for the more general
truncated primitive equations, but
research with the shallow water

equations indicates that the errors are
small (Weigle, 1972).

Polar problem

Models represented by finite
differences require grids, and the grids
for these models have been selected in a
variety of ways.  The projection
equations are gridded to establish some
uniformity of scale and allow for the
necessary differencing.  Since the
prediction equations can be represented
in spherical coordinates directly on a
global surface, gridding the surface in
latitude and longitude coordinates seems
both more appropriate and simple, and
since no mapping is required, this
representation has become popular.
Unfortunately as one approaches the
pole in this representation, the minimum
increment of longitude (Δλ) remains the
same but the length of the increment
decreases with the cosine of latitude.  As
the linear (CFL) stability criterion
depends on the grid length, shorter time
steps are required to maintain stability
near the pole and leads to the classic
‘pole problem’.  Various solutions to this
problem have been proposed but none
are ideal, as the following example
suggests.  Consider a representation of
any model variable where x describes
latitude and M refers to half the number
of grid points.  If one truncates this
series so that the terms following N
where N>M are removed, the resulting
series will represent only larger space
scales and a longer time increment will
yield stable results.  This process has
been used frequently.  Unfortunately
arbitrary truncation of terms in the
prediction system may alter the ultimate
solution, noting the fragile nature of
nonlinear systems.
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In the spectral system, scales are
directly represented by expansion in
wave number, and no special truncation
is required to avoid linear stability
anywhere on the domain.  In addition, all
the expansion functions selected are
regular at the pole, so no instability can
occur due to function convergence
problems.

3. SCALING

Scaling is often used as a prelude to
truncation. In the physical space domain
used by the finite difference system,
scales are determined by grid elements
with length Δx.  In the spectral domain,
scales are determined by wave numbers;
i.e., they are the transforms of the
gridded lengths.

3.1 Scaling in the horizontal domain

Let us first find a characteristic scale
in a horizontal two dimensional spectral
domain. Considering the properties of
the Laplace operator from scale analysis,
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 (36)

where l is an index representing the
number of sub-regions in s2, the area of
the domain.

Cartesian domain

Assume a function 

€ 

f r( ) = exp ik ⋅ r( )
such that,

€ 

∇2 f = −k 2 f = kx
2 + ky

2( ) f   (37)

so that 

€ 

 l2 = k 2s2, a two dimensional
index, depends on both horizontal
dimensions.

Spherical surface:

A s s u m e  a  f u n c t i o n

€ 

f r( ) =Yα λ,µ( ) = exp imαλ( )Pα µ( ) such
that,

€ 

∇2 f =∇2Yα = nα nα +1( )Yα   (38)

so that 

€ 

 l2 = nα nα +1( )s2 .  Here the two
dimensional index depends only on a
single scale index nα , and linearly if nα

>>  1.  The scale dependence on the
indices in both domains (the Cartesian
and the spherical) can be seen from
Figure 3.  The figure depicts the scaling
indices k and n as they depend on each
of the one dimensional indices.  The
structure of the two dimensional scale
elements are obviously rectangles in the
Cartesian domain, but are somewhat
more complex in the spherical domain.
Figure 1 gives a sense of the structure of
the scale elements over the sphere for a
selected few indices.
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Figure 3.  Dependence of the two dimensional indices for the Cartesian and Spectral representations on the one
dimensional components of the indices.

3.2 Scaling in the vertical domain

In the finite-difference domain there
is no general scaling information.  One
can get some insight from vertical
structure functions taken from data using
empirical orthogonal functions (EOFs).
Alternately, using a simplified equation
for atmospheric flow which has linear
solutions, the quasi-potential vorticity
equation, one has
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Vertical structures can be constructed
from this vertical equation using the L
operator with eigenvalues which are the

vertical scaling numbers hk(equivalent
depths),

€ 

fo2∂
ρ ∂z

ρ ∂ψ
N 2∂z
 

 
 

 

 
 =

fo2

ghk
 (41)

For simple thermodynamic profiles and
BCs, these structures are Bessel
functions.

Three-dimensional scaling

In this case we again use the quasi-
potential vorticity equation as our
model.  Now the operator L has
eigenvalues which depend on the
horizontal index n and equiv. depth hk,

€ 

s2 n,k( ) = n n +1( ) +
a2 fo2

ghk
 (42)
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and these indices  can be used for three-
dimensional scaling. Table 1

summarizes some values for s as a
function of n and hk.

TRUNCATION

Truncation is essential to close a
model so that it can be integrated. There
are a variety of ways to do this. With the
finite difference method, there are many
alternatives depending on grid
dimensions, point distribution, etc.
Things are much more precise for the
spectral method.

Two-dimensional truncation
with the spectral model

Some options follow:

a)  One can truncate at a specified

wave number α = (n + im)max.
b)  One can truncate at a specified
ordinal index, nmax, and m  ≤  nmax;
this is denoted as triangular
truncation.
c)  One can truncate at mmax  and n ≤
n  + m max; this is denoted as
rhomboidal truncation.

These truncations are depicted
graphically on Figure 2 which is a
conventional spectral diagram using the
indices n and m for coordinates.

Options (b) and (c) have been most
popular.  It is seen that the energy in
atmospheric surfaces converges rapidly
with both these truncations.  With
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reference to relative advantages, (c) has
the benefit of giving each planetary
wave equal resolution, but (b) is simpler
and perhaps more computationally
economical, and depends on a single
scale index.  Additionally, some

observational data seems to distribute
along lines of constant n.  This can be
seen on Figure 4, which shows the
average KE taken from a data archive on
a  s p e c t r a l  d i a g r a m .

Figure 4. Average KE (both ht. and time) as percent of total in each wave component α  = n +im
taken from data archives of midlevel atmospheric fields.

Three-dimensional truncation with
the spectral model

One can truncate a three-dimensional
spectral model using fixed values of the
three-dimensional index s (42).  In this
situation, n is the scaling index in the
horizontal domain and k is the index in
the vertical domain. Figure 5 gives a
graphical representation of some
available choices.

As an alternative procedure to
selecting three-dimensional truncation
for a model, one can find vertical levels
in the atmosphere on which the
numerical structures of the quasi-
geostrophic potential vorticity equation

converge to their exact solutions.  These
levels can be used as optimum vertical
levels in a vertical finite difference
representation of a spectral model. Thus
one can establish a truncated three
dimensional model using Legendre
polynomials in the horizontal and either
vertical structure functions or the
corresponding appropriate grid points as
described above.  Some optimized levels
as a function of the total number of
levels chosen a model using this
technique are described on Table 2.
Both of these techniques need careful
testing to assess their value in spectral
modeling.
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vertical index - k
Figure 5. For three-dimensional truncation, lines of constant s for various combinations of k and n.
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Number of levels

7 9 12 15

14.7 13.2 12.3 11.8

18.1 16.0

22.3 26.6 21.8

28.3 29.6

37.1 39.0 40.3

54.6 61.9 57.3 54.8

84.1 74.4

106. 103. 123. 101.

138.

172. 181. 187.

218. 297. 266. 254.

492. 346.

592. 653. 540.

819. 827.

943. 963. 985. 986.

Table 2. Optimized σ-levels in hpa as a function of the total number of levels selected.

4. THE COMPUTATIONAL
WORLD AND SPECTRAL
MODELS

When computational models first
appeared, only the computation cycle
speed and memory requirements were
considered relevant to the integrations.
However as computing machines with
innovations such as vector processing
and later multiprocessors appeared, new
issues evolved. Models also became
larger such that current models need
more computing power than is available.
Thus one must use the newer machines
most efficiently, and this process takes
careful study.

To demonstrate this evolution,
consider the following example.  Define

a "computing cycle" to be that time
required to do once all calculations that
are systematically repeated (in time) to
complete the entire calculation. For
conventional marching problems this
computing cycle is one complete time
step. On a serial machine the computing
cycle is the total time for that operation
and can only be reduced by a faster
machine. On a MPP the computing cycle
is reduced insofar as many computations
can be performed simultaneously. The
time required to complete this cycle
should converge to the time needed by
the machine to perform one computation
(the machine cycle) as the number of
processors is increased.

We have used this idea on a parallel
processor to avail ourselves of the

54.857.361.954.6

40.339.037.1

29.628.3

21.826.622.3

16.018.1

11.812.314.7

152
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computing efficiency it afforded. In
particular we chose a SIMD parallel
processor with 64000 simple processors
called the CM-5 and applied the
calculation to the spectral (BVE) using
the expansion coefficient method.  The
equations are given by (24) and (25).
Note that the tendency of each expansion
coefficient (

€ 

ψα (t)) is determined by the
quadratic product of many such
coefficients multiplied by a unique
interaction coefficient (

€ 

Iα,β ,γ ).  We

distribute the interaction coefficients one
to a processor, if there are a sufficient
number of them.  We then send the
appropriate expansion coefficient
couples (

€ 

ψβψγ ) to the processors, and

perform a simple multiplication of all the
products in one machine cycle (for as
many processors as are available).  Note
that in the limit, this process can
approach one machine cycle.  The
products are then swept and added as
required to form the tendencies of the
expansion coefficients, which are then
extrapolated in time. This cycle is
repeated until the prediction is complete.
It should also be noted the interaction
coefficient scheme is a highly redundant
computation method on a serial
processor and is thus computationally
inefficient.

We calculated the BVE on a CM-5
using this scheme and compared the
results to those retrieved from an
identical calculation using the transform
method, and discovered that both models
ran with comparable  speed.
Additionally, we used a two-level
baroclinic model and ran the same
comparison.  The results of integrations
with those versions of the model also ran
with comparable speed.  The implication
of this experiment suggests that SIMD
machines with multi-million processors
(a rather inexpensive development)

could give the interaction coefficient
technique a significant boost in
computing efficiency when compared to
other methods.  This experiment
highlights the potential of the spectral
method if the appropriate computing
machinery is available.

6. HISTORY

Since the 1960s, the spectral method
has become by far the most popular
technique for converting the prediction
equations to a computational form.  It
appears to overcome many of the
limitations introduced by the finite
difference method, and despite new
ideas that are drawing modelers to other
procedures, it remains an attractive
method to the modeling community.
Perhaps the first successful primitive
equation spectral model may be
attributed to Bourke [34].  Since that
time, most prediction centers have
adopted the method.  The Canadians and
Australians implemented the method in
1976, the National Meteorological
Center of NOAA did so in 1980, the
French in 1982 and the ECMWF in
1983.  As an example of how computing
power has evolved, production spectral
models at ECMWF have grown in
resolution from T63 in 1983 to T213 in
1998 with experiments running at T319.

7. SUMMARY

NWP has made dramatic strides over
the last half century following the
development of digital computers.  No
small part of this process is based on the
application of computing methods and a
thorough knowledge of their features.
The utilization of the finite difference
method with the prediction equations
began the process because the method
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had been studied and appeared
appropriate to the topic.  Concurrently
studies began with the spectral method, a
procedure not yet at the time in the
forefront of competitive methods.  The
breakthrough came when the transform
method was unveiled, because it allowed
the number of calculations needed to
make a forecast to compete favorably
with the finite difference method.  As
popularity of the spectral method
evolved over the years, a number of its
features came to light.  Those features
suggested that the method could produce
forecasts more efficiently and perhaps
with occasional improvements over
other methods.

As noted, the transform method was
the single most important feature, which
gave the spectral method its impetus.
Additionally, it tends to eliminate linear
instability linear and phase errors, it
bypasses an important nonlinear
instability, it conserves important
parameters of the system, it avoids the
pole problem, it has clear scaling
properties which allow for efficient and
appropriate truncation based on the
important scales that need prediction,
and it gives insight on three dimensional
truncation wherein the scales in the
horizontal and vertical are balanced.
From the computational point of view, it
allows for efficient computing on
parallel processors, thereby speeding the
time needed for a forecast.  This is
becoming increasingly more important
as the physics incorporated in models

becomes more complex.
 Clearly the spectral method has

some desirable features that have made it
the method of choice over the last
decades, but it would be presumptuous
to say that NWP would not have
advanced to its current position without
it.  Only time will tell what the optimum
method for NWP will be, if there is one.
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